Abstract
Extended-spectrum β-lactamases (ESBLs) hydrolyse extended-spectrum cephalosporins (ESC) and aztreonam. As ESBL-producing organisms have been identified in food producing animals, the aim of our study was to detect and analyse such Escherichia coli isolates from poultry. Antibiotic susceptibility of the isolates was determined with disk-diffusion and broth microdilution methods. ESBLs were detected with the double-disk synergy and inhibitor-based test with clavulanic acid. The transferability of cefotaxime resistance was determined with conjugation experiments, and genes encoding ESBLs, plasmid-mediated AmpC β-lactamases, and quinolone resistance determinants identified by polymerase chain reaction. The study included 108 faecal samples (cloacal swabs) from 25 different poultry farms in the Zenica-Doboj Canton, Bosnia and Herzegovina. Of these, 75 (69.4 %) were positive for E. coli, of which 27 were resistant to cefotaxime, amoxicillin, cefazoline, and cefriaxone, and susceptible to imipenem, meropenem, ertapenem, and amikacin. All 27 cefotaxime-resistant isolates were positive in double-disk synergy and combined disk tests. Eighteen isolates transferred cefotaxime resistance to E. coli recipient. Twenty-one isolates were positive for the blaCTX-M-1 cluster genes and seven for blaCTX-M-15. Fourteen were positive for the blaTEM genes. The most frequent plasmid incompatibility group was IncFIB, whereas IncFIA and Inc HI1 were present in only a few isolates. Two different sequence types (STs) were identified: ST117 and ST155. The emergence of ESBL-producing E. coli in farm animals presents a public health threat, as they can colonise the intestine and cause infections in humans.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have