Abstract

Many sketch processing applications target precise vector drawings with accurately specified stroke intersections, yet free-form artist drawn sketches are typically inexact: strokes that are intended to intersect often stop short of doing so. While human observers easily perceive the artist intended stroke connectivity, manually, or even semi-manually, correcting drawings to generate correctly connected outputs is tedious and highly time consuming. We propose a novel, robust algorithm that extracts viewer-perceived stroke connectivity from inexact free-form vector drawings by leveraging observations about local and global factors that impact human perception of inter-stroke connectivity. We employ the identified local cues to train classifiers that assess the likelihood that pairs of strokes are perceived as forming end-to-end or T- junctions based on local context. We then use these classifiers within an incremental framework that combines classifier provided likelihoods with a more global, contextual and closure-based, analysis. We demonstrate our method on over 95 diversely sourced inputs, and validate it via a series of perceptual studies; participants prefer our outputs over the closest alternative by a factor of 9 to 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.