Abstract

In this paper, unstable dynamics is considered for the models of vibro-impact systems with linear differential equations coupled to an impact map. To provide a skeleton for the organization of chaotic attractors, we propose a method for detecting unstable periodic orbits embedded in chaotic attractors through a combination of unconstrained optimization technique and Poincaré map. Three numerical examples from different vibro-impact models demonstrate that the strategy can efficiently detect unstable periodic orbits in chaotic attractors. In order to explore the mechanism responsible for the creation of multi-dimensional tori attractors, we also present another method to detect unstable quasiperiodic orbits embedded multi-dimensional tori attractors by examining a specially transient time series. The upper bound and lower bound of the transient time series (in the Poincaré map) can be obtained by analyzing transient Lyapunov exponent and transient Lyapunov dimension. Some examples verify the effectiveness of the numerical algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.