Abstract

Electronic systems living on Archimedean lattices such as kagome and square–octagon networks are presently being intensively discussed for the possible realization of topological insulating phases. Coining the most interesting electronic topological states in an unbiased way is however not straightforward due to the large parameter space of possible Hamiltonians. A possible approach to tackle this problem is provided by a recently developed statistical learning method (Mertz and Valentí in Phys Rev Res 3:013132, 2021. https://doi.org/10.1103/PhysRevResearch.3.013132), based on the analysis of a large data sets of randomized tight-binding Hamiltonians labeled with a topological index. In this work, we complement this technique by introducing a feature engineering approach which helps identifying polynomial combinations of Hamiltonian parameters that are associated with non-trivial topological states. As a showcase, we employ this method to investigate the possible topological phases that can manifest on the square–octagon lattice, focusing on the case in which the Fermi level of the system lies at a high-order van Hove singularity, in analogy to recent studies of topological phases on the kagome lattice at the van Hove filling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.