Abstract
Ultrasound examination plays a crucial role in the clinical diagnosis of thyroid nodules. Although deep learning technology has been applied to thyroid nodule examinations, the existing methods all overlook the prior knowledge of nodules moving along a straight line in the video. We propose a new detection model, DiffusionVID-Line, and design a novel tracking algorithm, ByteTrack-Line, both of which fully leverage the prior knowledge of linear motion of nodules in thyroid ultrasound videos. Among them, ByteTrack-Line groups detected nodules, further reducing the workload of doctors and significantly improving their diagnostic speed and accuracy. In DiffusionVID-Line, we propose two new modules: Freq-FPN and Attn-Line. Freq-FPN module is used to extract frequency features, taking advantage of these features to reduce the impact of image blur in ultrasound videos. Based on the standard practice of segmented scanning by doctors, Attn-Line module enhances the attention on targets moving along a straight line, thus improving the accuracy of detection. In ByteTrack-Line, considering the characteristic of linear motion of nodules, we propose the Match-Line association module, which reduces the number of nodule ID switches. In the testing of the detection and tracking datasets, DiffusionVID-Line achieved a mean Average Precision (mAP50) of 74.2 for multiple tissues and 85.6 for nodules, while ByteTrack-Line achieved a Multiple Object Tracking Accuracy (MOTA) of 83.4. Both nodule detection and tracking have achieved state-of-the-art performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have