Abstract
We investigate the behaviour of the primary solutions at a Hopf-Hopf interaction close to a 1:3 resonance. It turns out, that the secondary bifurcations from the primary periodic solution branches are governed by Duffing and Mathieu equations.By numerical path following a homoclinic orbit at a saddle node was detected, giving rise to the Shilnikov scenario. In order to understand the creation of homoclinic orbits, a continuation of that orbit was applied, which terminated at an equilibrium with a triple zero eigenvalue. The existence of different types of homoclinic and heteroclinic orbits in the vicinity of triple zero bifurcation points has already been established. A short discussion of the local bifurcations at the triple zero eigenvalue is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.