Abstract
By applying the undetermined coefficient method, this paper finds homoclinic and heteroclinic orbits in the Chen system. It analytically demonstrates that the Chen system has one heteroclinic orbit of Ši'lnikov type that connects two nontrivial singular points. The Ši'lnikov criterion guarantees that the Chen system has Smale horseshoes and the horseshoe chaos. In addition, there also exists one homoclinic orbit joined to the origin. The uniform convergence of the series expansions of these two types of orbits are proved in this paper. It is shown that the heteroclinic and homoclinic orbits together determine the geometric structure of Chen's attractor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.