Abstract

The evolution of a local strain of the Ti-6Al-4V alloy subjected to tensile loading was investigated in situ by using the digital image correlation technique. The results show that some local strain concentration areas have already appeared in the elastic deformation stage, which then connected and became concentrated in the gauge region when the specimen yielded. The strain compatibility of grains in the macroscopic region is kept constant. The deformation process is further divided into six parts based on the development of the maximum strain gradient, and the strain compatibility of each stage of the alloy is summarized and analyzed. The quasi-in situ experiment reveals that the primary α(αp) grains undertake the main deformation at the micro-scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.