Abstract

Tensile stiffness of interfacial layered rock is the basis of studying the law of interlaminar propagation of hydraulic cracks. We used similar materials to make simulated specimens of sand-mud layered rock with prefabricated cracks, and used the digital image correlation (DIC) technique together with the three-point bending (TPB) test to obtain the strain field near the prefabricated crack tip in tensile state. Combined with the tensile stress in the corresponding area calculated by the load of the tester, the tensile stress-displacement curve at the interface of layered rock is obtained, and the tensile stiffness and interfacial fracture law at the interface of layered rock is calculated by the curve. The results show that in the process of tensile failure, before reaching its peak value, the interfacial tension stress of layered rock has a linear elastic deformation stage followed by a short hardening stage. Upon reaching the peak value, it is accompanied by interfacial failure and macro-cracks, and then the load decreases and enters the softening stage, which results in the complete destruction of the interface. The tensile stiffness values of layered rock with different sizes vary greatly, which indicates that the interfacial tensile stiffness values are sensitive to the specimen size and have a size effect. The results are of great significance to the study of the law of hydraulic fracture propagation in the interface of layered rock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.