Abstract

In dendrochronology, temporal patterns in radial growth are considered an expression of historical climate processes that cannot be measured. Dendrochronological networks, developed to characterize the geographical and temporal patterns of tree rings, have additional spatial information that can add to our understanding of historical climate conditions. This paper summarizes the use of spatial autocorrelation statistical tools for quantifying spatial trends in dendrochronological networks. Using this approach it is possible to characterize the spatial nature of the process influencing radial growth trends within a tree-ring network. Using a local or mapable measure of spatial autocorrelation it is possible to locate clusters of similar and extreme radial growth trends in any given year and to characterize the persistence of spatial patterns of growth through time. Applied to a dendrochronological network of yellow-cedar ( Chamaecyparis nootkatensis (D. Don) Spach), our results suggest that spatial patterns in extreme growth are most often associated with growth limiting climate processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.