Abstract

Rock glaciers represent typical periglacial landscapes and are distributed widely in alpine mountain environments. Rock glacier activity represents a critical indicator of water reserves state, permafrost distribution, and landslide disaster susceptibility. The dynamics of rock glacier activity in alpine periglacial environments are poorly quantified, especially in the central Himalayas. Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) has been shown to be a useful technique for rock glacier deformation detection. In this study, we developed a multi-baseline persistent scatterer (PS) and distributed scatterer (DS) combined MT-InSAR method to monitor the activity of rock glaciers in the central Himalayas. In periglacial landforms, the application of the PS interferometry (PSI) method is restricted by insufficient PS due to large temporal baseline intervals and temporal decorrelation, which hinder comprehensive measurements of rock glaciers. Thus, we first evaluated the rock glacier interferometric coherence of all possible interferometric combinations and determined a multi-baseline network based on rock glacier coherence; then, we constructed a Delaunay triangulation network (DTN) by exploiting both PS and DS points. To improve the robustness of deformation parameters estimation in the DTN, we combined the Nelder–Mead algorithm with the M-estimator method to estimate the deformation rate variation at the arcs of the DTN and introduced a ridge-estimator-based weighted least square (WLR) method for the inversion of the deformation rate from the deformation rate variation. We applied our method to Sentinel-1A ascending and descending geometry data (May 2018 to January 2019) and obtained measurements of rock glacier deformation for 4327 rock glaciers over the central Himalayas, at least more than 15% detecting with single geometry data. The line-of-sight (LOS) deformation of rock glaciers in the central Himalayas ranged from −150 mm to 150 mm. We classified the active deformation area (ADA) of all individual rock glaciers with the threshold determined by the standard deviation of the deformation map. The results show that 49% of the detected rock glaciers (monitoring rate greater than 30%) are highly active, with an ADA ratio greater than 10%. After projecting the LOS deformation to the steep slope direction and classifying the rock glacier activity following the IPA Action Group guideline, 12% of the identified rock glaciers were classified as active and 86% were classified as transitional. This research is the first multi-baseline, PS, and DS network-based MT-InSAR method applied to detecting large-scale rock glaciers activity.

Highlights

  • Rock glacier is a tongue or lobate-shaped landform consisting of a seasonally frozen active rock debris layer, unconsolidated rock debris, and ice supersaturated debris or pure ice [1,2]

  • Following the baseline concepts and practical guidelines of the IPA Action Group rock glacier inventories and kinematics, we visually identified rock glaciers by referring to highresolution satellite images and manually delineated the outline of each rock glacier

  • We evaluated the consistency of the deformation rate derived from the multi-baseline

Read more

Summary

Introduction

Rock glacier is a tongue or lobate-shaped landform consisting of a seasonally frozen active rock debris layer, unconsolidated rock debris, and ice supersaturated debris or pure ice [1,2]. It is a typical gravity and seasonally freeze-thaw driven feature of creeping permafrost found in periglacial environments [3,4]. Periglacial hydrological resources are susceptible to environmental change; the active layer thickness of rock glaciers and periglacial permafrost thickens as temperature increases [8,9,10]; the displacement variations of rock glaciers are effective indicators of periglacial environmental change [7,8]. Detecting rock glacier activity is crucial for mapping the permafrost zonation index [11,12]

Objectives
Findings
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.