Abstract

Evolutionary biologists have long sought to understand the full complexity in pattern and process that shapes organismal diversity. Although phylogenetic comparative methods are often used to reconstruct complex evolutionary dynamics, they are typically limited to a single phenotypic trait. Extensions that accommodate multiple traits lack the ability to partition multidimensional data sets into a set of mosaic suites of evolutionarily linked characters. I introduce a comparative framework that identifies heterogeneity in evolutionary patterns across large data sets of continuous traits. Using a model of continuous trait evolution based on the differential accumulation of disparity across lineages in a phylogeny, the approach algorithmically partitions traits into a set of character suites that best explains the data, where each suite displays a distinct pattern in phylogenetic morphological disparity. When applied to empirical data, the approach revealed a mosaic pattern predicted by developmental biology. The evolutionary distinctiveness of individual suites can be investigated in more detail either by fitting conventional comparative models or by directly studying the phylogenetic patterns in disparity recovered during the analysis. This framework can supplement existing comparative approaches by inferring the complex, integrated patterns that shape evolution across the body plan from disparate developmental, morphometric, and environmental sources of phenotypic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.