Abstract
Hepatic cirrhosis is an increasing cause of mortality in developed countries—it is the pathological sequela of chronic liver diseases, and the final liver fibrosis stage. Since cirrhosis evolves from the asymptomatic phase, it is of paramount importance to detect it as quickly as possible, because entering the symptomatic phase commonly leads to hospitalization and can be fatal. Understanding the state of the liver based on the abdominal computed tomography (CT) scans is tedious, user-dependent and lacks reproducibility. We tackle these issues and propose an end-to-end and reproducible approach for detecting cirrhosis from CT. It benefits from the introduced clinically-inspired features that reflect the patient’s characteristics which are often investigated by experienced radiologists during the screening process. Such features are coupled with the radiomic ones extracted from the liver, and from the suggested region of interest which captures the liver’s boundary. The rigorous experiments, performed over two heterogeneous clinical datasets (two cohorts of 241 and 32 patients) revealed that extracting radiomic features from the liver’s rectified contour is pivotal to enhance the classification abilities of the supervised learners. Also, capturing clinically-inspired image features significantly improved the performance of such models, and the proposed features were consistently selected as the important ones. Finally, we showed that selecting the most discriminative features leads to the Pareto-optimal models with enhanced feature-level interpretability, as the number of features was dramatically reduced (280×) from thousands to tens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.