Abstract
Biological and clinical databases are increasing at a very high rate making a large volume of experimental data publicly available. In this paper, we propose a framework that makes use of external biological knowledge to predict if two given genes interact with each other. To this end, we utilize prior knowledge about interaction of two genes by generating a Bayesian Network using existing external biological knowledge. External knowledge types to be utilized are obtained from interaction databases such as BioGrid and Reac-tome and consist of protein-protein, protein-DNA/RNA, and gene interactions. We first built a naive Bayesian Network to predict if two genes interact by employing parameter learning using known gene interactions. We propose that the resulting model will be incorporated into methods learning networks from high throughput biological data and interacting genes will be represented in the form of a network. In this process of network generation, the Bayesian Network model deducing gene interactions from external knowledge will be used to calculate the probability of candidate networks to enhance the structure learning task. Our simulations on both synthetic and real data sets show that proposed framework can successfully enhance identification of the true network and be used in predicting gene interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.