Abstract

One of the main problems in systems biology is learning gene interaction networks from experimental data. This turns out to be a challenging task as the experimental data is sparse and noisy, and network learning algorithms are computationally intense. Bayesian Networks (BN) have become a popular choice for learning such networks as BNs avoid overfitting and are robust to noise. In this paper we build up on our established framework, Bayesian Network Prior, where we incorporate existing biological knowledge in learning gene interaction networks. However, biological phenomena are time-dependent and there is need to extend the static structure of learning approaches to a temporal level. Here, we present a Dynamic BN framework, which learns interaction networks between different time points in time-series data. Both intra and inter networks are learnt and compared to standard DBN learning algorithms. Our results based on synthetic and simulated gene expression data suggest that the proposed method outperforms existing approaches in identifying the underlying network structure. The proposed framework is robust to errors in the incorporated knowledge and can combine various experimental data types together with existing knowledge when learning networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.