Abstract
In the Feedback Vertex Set (FVS) problem, one is given an undirected graph G and an integer k , and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O ⋆ (f(k)) , where the O ⋆ notation omits factors polynomial in n . This race seemed to have reached a conclusion in 2011, when a randomized O ⋆ (3 k ) time algorithm based on Cut&Count was introduced. In this work, we show the contrary and give a O ⋆ (2.7 k ) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω (1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.