Abstract
Epileptic seizure detection aims to replace unreliable seizure diaries by a model that automatically detects seizures based on electroencephalography (EEG) sensors. However, developing such a model is difficult and time consuming as it requires manually searching for relevant features from complex EEG data. Domain experts may have a partial understanding of the EEG characteristics that indicate seizures, but this knowledge is often not sufficient to exhaustively enumerate all relevant features. To address this challenge, we investigate how automated feature construction may complement hand-crafted features for epileptic seizure detection. By means of an empirical comparison on a real-world seizure detection dataset, we evaluate the ability of automated feature construction to come up with new relevant features. We show that combining hand-crafted and automated features results in more accurate models compared to using hand-crafted features alone. Our findings suggest that future studies on developing EEG-based seizure detection models may benefit from features constructed using a combination of hand-crafted and automated feature engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.