Abstract
The objective of this paper is to examine population response to COVID-19 and associated policy interventions through detecting early-warning signals in time series of visits to points of interest (POIs). Complex systems, such as cities, would demonstrate early-warning signals (e.g., increased autocorrelation and standard deviation) when they approach phase transitions responding to external perturbation, such as crises, policy changes, and human behavior changes. In urban systems, population visits to POIs, such as restaurants, museums, and hospitals, represent a state of cities as complex systems. These states may undergo phase transitions due to population response to pandemic risks and intervention policies (e.g., social distancing and shelter-in-place orders). In this study, we conducted early-warning signal detection on population visits to POIs to examine population response to pandemic risks, and we evaluated time lags between detected early-warning dates and dates of first cases and policy interventions. We examined two early-warning signals, the increase of autocorrelation at-lag-1 and standard deviation, in time series of population visits to POIs in 17 metropolitan cities in the United States of America. We examined visits to grouped POIs according to two categories of essential services and non-essential services. The results show that: (1) early-warning signals for population response to COVID-19 were detected between February 14 and March 11, 2020 in 17 cities; (2) detected population response had started prior to shelter-in-place orders in 17 cities; (3) early-warning signals detected from the essential POIs visits appeared earlier than those from non-essential POIs; and 4) longer time lags between detected population response and shelter-in-place orders led to a less decrease in POI visits. The results show the importance of detecting early-warning signals during crises in cities as complex systems. Early-warning signals could provide important insights regarding the timing and extent of population response to crises to inform policymakers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.