Abstract
The logistic regression (LR) procedure for testing differential item functioning (DIF) typically depends on the asymptotic sampling distributions. The likelihood ratio test (LRT) usually relies on the asymptotic chi-square distribution. Also, the Wald test is typically based on the asymptotic normality of the maximum likelihood (ML) estimation, and the Wald statistic is tested using the asymptotic chi-square distribution. However, in small samples, the asymptotic assumptions may not work well. The penalized maximum likelihood (PML) estimation removes the first-order finite sample bias from the ML estimation, and the bootstrap method constructs the empirical sampling distribution. This study compares the performances of the LR procedures based on the LRT, Wald test, penalized likelihood ratio test (PLRT), and bootstrap likelihood ratio test (BLRT) in terms of the statistical power and type I error for testing uniform and non-uniform DIF. The result of the simulation study shows that the LRT with the asymptotic chi-square distribution works well even in small samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.