Abstract
BackgroundPrevious studies have reported that clinical walk tests could not detect differences between fallers and non-fallers in older adults. With advancements in wearable technology, it may be possible to assess differences in loading parameters in clinical settings using portable data collection methods. Research question: The purpose of this study was to determine if wearable sensors (loadsol®) are reliable for assessing asymmetry of contact time, peak force, loading rate (LR), and impulse in older adults and determine if the insole can detect differences in these parameters between fallers and non-fallers during walking. MethodsFifty-five older adults (74.1 ± 6.1 years) walked at their maximum speed on a flat floor. Force data were collected from insoles (100 Hz) during a 10-m walk test. To assess reliability, an intraclass correlation coefficient [ICC(2,k)] was generated for each asymmetry variable. To determine differences between fallers and non-fallers, analysis of covariance (ANCOVA; covariate: body mass index) was completed for each variable. ResultsThe ICC of peak force asymmetry (PFA) was 0.942, but other ICCs were less than 0.75. The ANCOVA results indicate that the loadsol® can detect differences in PFA between fallers and non-fallers. The PFA was significantly greater in fallers than in non-fallers. SignificanceThe ability to collect force data while walking using loadsol® has the potential to broaden the research questions investigated, explore clinical applications, and increase generalizability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.