Abstract

The cytokine production by leukocytes correlates with body's ability to mount an immune response and therefore has high diagnostic value. In the present study we employed microfabricated surfaces to capture T-cells from minimally processed human blood, arrange these cells into a single cell array, and then detect interferon (IFN)-gamma released from individual cells. The fabrication of cell capture surfaces started with coating a silane-modified glass slide with a uniform layer of poly(ethylene glycol) (PEG) hydrogel. The hydrogel-coated slide was lyophilized and then incubated with a mixture of monoclonal anti-IFN-gamma and anti-CD4 antibodies (Abs). To define sites for single cell attachment, PEG hydrogel microwells (20 microm diameter) were photolithographically patterned on top of the Ab-containing hydrogel layer. This micropatterning process resulted in fabrication of PEG hydrogel microwells with Ab-decorated bottom and nonfouling walls. To minimize the blood volume requirement and to precisely define shear stress conditions, the engineered surface was enclosed inside a PDMS-based microfluidic device. Introduction of red blood cell (RBC) depleted whole human blood followed by controlled washing led to the isolation of individual CD4 T-cells within PEG microwells. Mitogenic activation and immunofluorescent staining performed inside the microfluidic chamber revealed IFN-gamma cytokine signal colocalized with specific T-cells. The device and process presented here will be expanded in the future to enable multiparametric functional analysis of immune cells organized into high density single cell arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call