Abstract

The puzzling phenomenon of adversarial examples continues to attract significant research within the machine learning community. The confirmation that adversarial examples can arise in natural real-life circumstances has but increased the interest. While several methods have been proposed for both generating adversarial examples and defending against them, in this work we focus on a previous serendipitous discovery indicating that they can be considered as chaotic signals. More specifically, it has been recently shown that measures of chaoticity in the input signal can be used to detect adversarial examples efficiently. In this work, we extend that approach in two aspects, leading to significant improvements in detection accuracy as demonstrated by results obtained in experiments with four datasets and using seven different attack methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.