Abstract

This study aimed to detect trends in the long-term hydro-climatic series using non-parametric methods. The annual and seasonal linear trends of rainfall, temperature, runoff, water level and evaporation were analysed for stations in downstream Kaduna River Basin during 1975-2014. The non-parametric Mann-Kendall and Sen’s estimator of slope procedures were adopted to identify if there exists an increasing or decreasing trend with their statistical significance at 95% level of confidence. The datasets were checked to account for auto-correlation prior to determining trends using Mann-Kendall test. The existence of abrupt changes was detected by means of Cumulative Sum Charts and Bootstrapping analysis. The results of study indicated increasing trends for seasonal and annual temperature and runoff series. Water level and evaporation revealed statistically decreasing trends both on annual and seasonal periods. However, for the period 1975 to 2014 no significant distinctive trend was observed for rainfall at the investigated stations. Change-points in time series were identified in all the investigated hydro-climatic records for the sub-basin. Generally, the detection of the trend for hydro-climatic variables by Mann-Kendall test conforms to Sen’s test results. It is concluded that the basin is sensitive to climate variability and water stress impacts which will affect food security. So, it would be necessary to make adjustments in the adaptive water-use strategies being adopted at present in the catchment.

Highlights

  • Global and regional changing climate and variabilities including their societal impacts over the past three decades have received a considerable concern from the scientific community

  • The fifth Intergovernmental Panel on Climate Change assessment stated Africa surface temperature already increased by 0.5 ̊C - 2 ̊C over the past hundred years and an observed drop in average annual rainfall of approximate 25 - 50 mm each decade from 1951-2010 in some parts of West Africa while globally averaged combined land and ocean surface temperature show a warming of 0.85°C over the period 1880 to 2012 [1] [2]

  • Investigations on present and plausible future climate change patterns and impacts on water resources have become of great interest in different parts of the world because of their serious effects imparted on both human society and the natural environment

Read more

Summary

Introduction

Global and regional changing climate and variabilities including their societal impacts over the past three decades have received a considerable concern from the scientific community. The fifth Intergovernmental Panel on Climate Change assessment stated Africa surface temperature already increased by 0.5 ̊C - 2 ̊C over the past hundred years and an observed drop in average annual rainfall of approximate 25 - 50 mm each decade from 1951-2010 in some parts of West Africa while globally averaged combined land and ocean surface temperature show a warming of 0.85°C over the period 1880 to 2012 [1] [2]. Climate change is likely to accelerate the global hydrological cycles, and a greater increase is expected in extreme rainfall as compared to the mean [7] and higher temperatures it will increase evaporation. With respect to climate variability and change impact on water resources, recent detected decreasing trend in water resources will continue in the future due to warming and rainfall declines [9] and a decrease in runoff is expected for 2050 [10]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.