Abstract

Loess is an important soil type that is widespread in the Loess Plateau of northwest China. However, mining exploitation, beneficiation, and metallurgy have led to inorganic contamination of soils that threatens the health of residents. The regular absorption peak shift of near-infrared (NIR) spectra in loessal soils represents a new method of soil environmental assessment based on field reflectance spectroscopy and hyperspectral remote sensing. Specifically, the NIR features of loessal soil will shift in response to changes in the soil composition and microstructure induced by heavy metal pollution. This study collected 27 samples from notable regions in the study area. Mid-infrared (MIR) spectral analysis, NIR spectral analysis, modified seven-step Tessier sequential extraction, and X-ray diffraction were used to analyze the band shift phenomenon of MIR and NIR features. The alignment of NIR bands was determined via the correlation between NIR and MIR bands associated with the vibration variations of the hydroxyl group. The correlations established by NIR band positions and exchangeable Cd cations were also analyzed. The results were then discussed according to the mineralogical characteristics of the heavy metal cations adsorbed on the surface and interlayer sites of clay minerals. These results can be used as a reference for the application of NIR technology to detecting heavy metal contamination in the soil of mining regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.