7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.cam.2017.08.021
Copy DOIPublication Date: Sep 13, 2017 | |
Citations: 10 | License type: publisher-specific-oa |
In a two-layered medium, we prove that a buried inhomogeneous scatterer is uniquely determined from the wave field data measured in the upper half-space with respect to many incident point sources. Moreover, we extend the multilevel sampling method in Liu and Zou (2013) to numerically reconstruct the buried scatterer applying only few incident fields and partial scattered data. The extended recovery scheme only involves matrix–vector operations and does not need to solve any large-scale ill-posed linear systems or any optimization process. It is feasible to deal with the scatterers of different features and easy to implement, highly tolerant to noise and computationally quite cheap. We can regard it as an effective yet simple computational method to provide a reliable initial guess for the implementation in existing more accurate and refined optimization-type reconstruction algorithms.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.