Abstract
The detection of critical source areas (CSAs) is a key step in managing soil phosphorus (P) loss and preventing the long-term eutrophication of water bodies at regional scale. Most related studies, however, focus on a local scale, which prevents a clear understanding of the spatial distribution of CSAs for soil P loss at regional scale. Moreover, the continual, long-term variation in CSAs was scarcely reported. It is impossible to identify the factors driving the variation in CSAs, or to collect land surface information essential for CSAs detection, by merely using the conventional methodologies at regional scale. This study proposes a new regional-scale approach, based on three satellite sensors (ASTER, TM/ETM and MODIS), that were implemented successfully to detect CSAs at regional scale over 15years (2000–2014). The approach incorporated five factors (precipitation, slope, soil erosion, land use, soil total phosphorus) that drive soil P loss from CSAs. Results show that the average area of critical phosphorus source areas (CPSAs) was 15,056km2 over the 15-year period, and it occupied 13.8% of the total area, with a range varying from 1.2% to 23.0%, in a representative, intensive agricultural area of China. In contrast to previous studies, we found that the locations of CSAs with P loss are spatially variable, and are more dispersed in their distribution over the long term. We also found that precipitation acts as a key driving factor in the variation of CSAs at regional scale. The regional-scale method can provide scientific guidance for managing soil phosphorus loss and preventing the long-term eutrophication of water bodies at regional scale, and shows great potential for exploring factors that drive the variation in CSAs at global scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.