Abstract

Alzheimer's disease (AD) generally results in neuronal loss due to protein dysfunction in various brain regions. Genome-wide data have provided new opportunities to analyze the underlying mechanisms of AD. Here, we present a novel network-based systems biology framework to identify and analyze differentially activated pathways by integrating human protein-protein interaction data and gene expression profile data in six brain regions. Specifically, we propose a new scoring system by ranking the edges associated with AD. Then, an edge expansion algorithm is designed to identify the dysfunctional pathways implicated in AD pathogenesis in six brain regions respectively. The analyses of the similarities and differences of these dysfunctional pathways provide insights into understanding the dynamics of AD progression in six brain regions from a network perspective, which will further shed light on the pathogenesis of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.