Abstract

This paper addresses the detection of a suddenly arriving dynamic profile of a finite duration often called a transient change. In contrast to the traditional abrupt change detection, where the post-change period is assumed to be infinitely long, the detection of a suddenly arriving transient change should be done before it disappears. The detection of transient changes after their disappearance is considered as missed. Hence, the traditional quickest change detection criterion, minimizing the average detection delays provided a prescribed false alarm rate, is compromised. The proposed optimality criterion minimizes the worst case probability of missed detection provided that the worst case probability of false alarm during a certain period is upper bounded. A suboptimal CUSUM-type transient change detection algorithm, based on a subclass of truncated Sequential Probability Ratio Tests, is proposed. The optimization of the proposed algorithm in this subclass leads to a specially designed Finite Moving Average Test. The proposed method is analyzed theoretically and by simulation. A special attention is paid to the case of Gaussian observations with a dynamic profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.