Abstract

AbstractDetecting long-term changes in precipitation extremes over monsoon regions remains challenging due to large observational uncertainty, high internal variability at the regional scale, and climate models’ deficiency in simulating monsoon physics. This is particularly true for Eastern China, as illustrated by limited yet controversial detection results for daily scale precipitation extremes and the lack of detection analysis on hourly scale extremes there. Relying on high-quality gauge observations, two complementary techniques are used to detect the footprint of anthropogenic forcings in observed changes in both hourly and daily scale precipitation extremes across Eastern China. Results show that, scaled with global-mean surface temperature during 1970–2017, the regional-scale intensification nearly doubles the Clausius–Clapeyron rate (C-C; ~6.5% °C−1) for the wettest 10 h in the period and almost triples the C-C rate for the top 10 heaviest daily precipitation extremes. The intensification at both time scales, as well as the resulting increase in frequency, is discernibly stronger and more widespread than expected due to random internal variability. This not only lends supports to the model-based detection of forced trends for daily scale precipitation extremes, but it also suggests that anthropogenic warming has already be intensifying hourly scale precipitation extremes in this monsoon region. The magnitude and detectability of observed changes arise primarily from systematic intensification of non-tropical-cyclone-related precipitation extremes in response to the past warming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call