Abstract

ABSTRACT Gravitational lensing describes the bending of the trajectories of light and gravitational waves due to the gravitational potential of a massive object. Strong lensing by galaxies can create multiple images with different overall amplifications, arrival times, and image types. If, furthermore, the gravitational wave encounters a star along its trajectory, microlensing will take place. Previously, it has been shown that the effects of microlenses on strongly-lensed type-I images could be negligible in practice, at least in the low magnification regime. In this work, we study the same effect on type-II strongly-lensed images by computing the microlensing amplification factor. As opposed to being magnified, type-II images are typically demagnified. Moreover, microlensing on top of type-II images induces larger mismatches with un-microlensed waveforms than type-I images. These results are broadly consistent with recent literature and serve to confirm the findings. In addition, we investigate the possibility of detecting and analysing microlensed signals through Bayesian parameter estimation with an isolated point mass lens template, which has been adopted in recent parameter estimation literature. In particular, we simulate gravitational waves microlensed by a microlens embedded in a galaxy potential near moderately magnified type-I and II macroimages, with variable lens masses, source parameters and macromagnifcations. Generally, an isolated point mass model could be used as an effective template to detect a type-II microlensed image but not for type-I images, demonstrating the necessity for more realistic microlensing search templates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call