Abstract

In this paper, we focus on Bayesian estimation of the parameters in the geometric process (GP) in which the first occurrence time of an event is assumed to have Weibull distribution. The Bayesian estimators are derived based on both symmetric (Squared Error) and asymmetric (General Entropy, LINEX) loss functions. Since the Bayesian estimators of unknown parameters cannot be obtained analytically, Lindley’s approximation and the Markov Chain Monte Carlo (MCMC) methods are applied to compute the Bayesian estimates. Furthermore, by using the MCMC methods, credible intervals of the parameters are constructed. Maximum likelihood (ML) estimators are also derived for unknown parameters. The confidence intervals of the parameters are obtained based on an asymptotic distribution of ML estimators. Moreover, the performances of the proposed Bayesian estimators are compared with the corresponding ML, modified moment and modified maximum likelihood estimators through an extensive simulation study. Finally, analyses of two different real data sets are presented for illustrative purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.