Abstract

Introduction: Gram-negative bacteria especially Pseudomonas are resistance to multiple antibiotics including carbapenems. Carbapanemes resistance has increased in recent years caused by alterations of membrane or the production of carbapenemases. Objective: Assess the use of MALDI-TOF MS® mass spectrometry for the detection of carbapenemases class A or B in Pseudomonas aeruginosa. Material and methods: From isolated from Pseudomonas aeruginosa producing carbapenemases 12 class A or B identified by diffusion method disco-plate, classified using disks: meropenem 10μg, meropenem 10μg + boronic acid, meropenem 10μg + cloxacillin and meropenem 10μg + acid dipicolinic (Rosco Diagnostica), we analyzed possible hydrolysis of meropenem peaks after the action of the carbapenemases by MALDI-TOF MS® mass spectrometry. As negative controls were used 25 strains of Pseudomonas aeruginosa sensitive to meropenem and 8 strains of Pseudomonas aeruginosa with waterproof membrane, not detectable by the methodology used. Results: Of the 12 strains producing carbapenemases class A or B, (2/12 class A, 10/12 class B), MALDI-TOF MS® mass spectrometry technique detected peaks of degradation of the antibiotic in study to the presence of carbapenemases in 11/12 cases (94.4%). The strains used as controls negative, MALDI-TOF MS® mass spectrometry indicated the absence of carbapenemases class A or B at 31/33 cases (93.9%). Conclusion: MALDI-TOF MS® mass spectrometry can be a useful tool for the confirmation of carbapenemases class A and B in Pseudomonas aeruginosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call