Abstract
SLAM-associated protein (SAP) is an adaptor molecule that facilitates critical effector functions in immune cells, and its deficiency causes X-linked lymphoproliferative disease type 1 in which effector responses directed against EBV are severely compromised. The primary objective of this study was to phenotypically and functionally characterize a rare, CD8 T cell-restricted bimodal SAP expression pattern observed in healthy, human donors with the widely used 1C9-SAP mAb clone. We initially observed this pattern during the clinical validation of our flow cytometry-based assay to diagnose X-linked lymphoproliferative disease type 1 in our laboratory. For this validation study, we used multiparameter flow cytometry to identify cytosolic SAP expression in lymphocyte subsets, and CD8 T cells from the donors displaying the rare SAP expression pattern mentioned above were separately further evaluated by intracellular cytokine and CD107a staining to examine polyfunctionality following PMA/ionomycin and HLA class I allele-restricted EBV peptide epitope-induced T cell activation. Our data revealed that SAP 1C9-hi CD8 T cells clearly displayed higher polyfunctional responses versus SAP 1C9-lo CD8 T cells following PMA/ionomycin stimulation. Furthermore, polyfunctional EBV-specific CD8 T cell responses segregated with the SAP 1C9-hi CD8 T cells and not the SAP 1C9-lo CD8 T cells. Additionally, and rather intriguingly, short- and long-term T cell stimulation selectively diminished the signal for the 1C9-hi subset. Overall, our data suggest that although rare, this unique SAP expression pattern merits further evaluation as it has the potential to provide some insight into fundamental processes as they might relate to host-pathogen dynamics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have