Abstract

A detailed model for semiconductor linear optical amplifiers (LOAs) with gain clamping by a vertical laser field is presented, which accounts the carrier and photon density distribution in the longitudinal direction as well as the facet reflectivity. The photon iterative method is used in the simulation with output amplified spontaneous emission spectrum in the wide band as iterative variables. The gain saturation behaviors and the noise figure are numerically simulated, and the variation of longitudinal carrier density with the input power is presented which is associated with the on-off state of the vertical lasers. The results show that the LOA can have a gain spectrum clamped in a wide wavelength range and have almost the same value of noise figure as that of conventional semiconductor optical amplifiers (SOAs). Numerical results also show that an LOA can have a noise figure about 2 dB less than that of the SOA gain clamped by a distributed Bragg reflector laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call