Abstract
BackgroundMechanical removal of a thrombus by thrombectomy can be quite challenging. For reasons that are not fully understood, some thrombi require multiple passes to achieve successful recanalization, whereas other thrombi are efficiently removed in a single pass. Since first pass success is associated with better clinical outcome, it is important to better understand the nature of thrombectomy resistant thrombi. The aim of this study was therefore to characterize the cellular and molecular composition of a thrombus that was very hard to retrieve via mechanical thrombectomy.Case presentationIn a patient that was admitted with a right middle cerebral artery M1-occlusion, 11 attempts using various thrombectomy devices and techniques were required for removal of the thrombus. This peculiar case provided a rare opportunity to perform an in-depth histopathological study of a difficult to retrieve thrombus. Thrombus material was histologically analyzed using hematoxylin and eosin, Martius Scarlet Blue stain (red blood cells and fibrin), Feulgen stain (DNA), von Kossa stain (calcifications) and immunohistochemical analysis of von Willebrand factor, platelets, leukocytes and neutrophil extracellular traps. Histological analysis revealed abnormally high amounts of extracellular DNA, leukocytes, von Willebrand factor and calcifications. Extracellular DNA stained positive for markers of leukocytes and NETs, suggesting that a significant portion of DNA is derived from neutrophil extracellular traps.ConclusionIn this unique case of a nearly thrombectomy-resistant stroke thrombus, our study showed an atypical composition compared to the common structural features found in ischemic stroke thrombi. The core of the retrieved thrombus consisted of extracellular DNA that colocalized with von Willebrand factor and microcalcifications. These results support the hypothesis that von Willebrand factor, neutrophil extracellular traps and microcalcifications contribute to mechanical thrombectomy resistance. Such information is important to identify novel targets in order to optimize technical treatment protocols and techniques to increase first pass success rates.
Highlights
Acute ischemic stroke is in the majority of cases caused by a thromboembolic occlusion of the cerebral arteries
In this unique case of a nearly thrombectomy-resistant stroke thrombus, our study showed an atypical composition compared to the common structural features found in ischemic stroke thrombi
The core of the retrieved thrombus consisted of extracellular DNA that colocalized with von Willebrand factor and microcalcifications
Summary
Acute ischemic stroke is in the majority of cases caused by a thromboembolic occlusion of the cerebral arteries. 60–75% of thrombectomy procedures require multiple passes to achieve a Thrombolysis in Cerebral Infarction (TICI) 2b-3 recanalization rate [6, 7]. Case presentation: In a patient that was admitted with a right middle cerebral artery M1-occlusion, 11 attempts using various thrombectomy devices and techniques were required for removal of the thrombus. This peculiar case provided a rare opportunity to perform an in-depth histopathological study of a difficult to retrieve thrombus. Thrombus material was histologically analyzed using hematoxylin and eosin, Martius Scarlet Blue stain (red blood cells and fibrin), Feulgen stain (DNA), von Kossa stain (calcifications) and immunohistochemical analysis of von Willebrand factor, platelets, leukocytes and neutrophil extracellular traps. Extracellular DNA stained positive for markers of leukocytes and NETs, suggesting that a significant portion of DNA is derived from neutrophil extracellular traps
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have