Abstract

Co@C is a novel class of catalysts with many structural advantages, such as highly dispersed active species, developed pore structure, and special encapsulated structure. Although considerable progress has been made in the development of new Co@C materials, research on the formation mechanism of these materials is lacking. Herein, the overall microcosmic structure of the Co@C catalyst was investigated by systematic characterization. Subsequently, a pseudo in situ method was employed to explore the detailed structure of the Co@C catalyst pyrolyzed at different temperatures. The special carbon environment of materials is essential for synthesizing materials during pyrolysis at high temperatures. Co ions were reduced to Co0 by the surrounding carbon atoms at a high temperature. In return, the surrounding carbon atoms were catalyzed by Co0 particles to form carbon nanotubes. However, with the obstruction of amorphous carbon atoms that are not in contact with Co0, the paths through which the carbon nanotubes move forward formed the porous structure of the catalyst, as well as the graphitic encapsulated structure. Further, the effects of pretreatment conditions on the structure and properties of the Co@C catalyst were studied systematically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call