Abstract

This paper presents a numerical study on the laser shock wave propagation in a 3D woven carbon-fiber-reinforced polymer (CFRP) material by means of detailed and homogenized finite element (FE) models. The aim of this study is to numerically characterize the shock wave response of the 3D woven CFRP in terms of back-face velocity profiles and the induced damage, and to investigate whether the detailed FE models could be effectively replaced by homogenized FE models. The 3D woven geometry was designed using the TexGen 3.13.1 software, while the numerical analyses were executed using the R11.0.0 LS-Dyna explicit FE software. A high-strain-rate behavior was considered for the matrix. The fiber bundles in the detailed models were modeled as a high-fiber-content unidirectional composite laminate, with its mechanical properties calculated by micromechanical equations. A progressive damage material model was applied to both the fiber bundles of the detailed model and the homogenized models. The results of the detailed model reveal a considerable effect of the material’s architecture on the shock wave propagation and sensitivity of the back-face velocity profile to the spot location. Consequently, the homogenized model is not capable of accurately simulating the shock wave response of the 3D woven composite. Moreover, the detailed model predicts matrix cracking in the resin-rich areas and in the bundles with high accuracy, as well as fiber failure. On the contrary, the homogenized model predicts matrix cracking in the same areas and no fiber failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call