Abstract
The corrosion inhibitory potency of two new pyrimidine-pyrazole derivatives, namely N-((3,5-dimethyl-1 H-pyrazol-1-yl) methyl) pyrimidin-2-amine (PPA) and ethyl 5-methyl-1-((pyrimidin-2-yl amino) methyl)− 1 H-pyrazole-3-carboxylate (PPC), was evaluated by mass loss measurements and electrochemical assays for mild steel (MS) in 1 M HCl at 308 K. In this survey, PPA and PPC products were chosen as inhibitors owing to their environmentally friendly formulation and biodegradability, which aligns with the growing demand for sustainable compounds. Besides, the molecular structure of PPA and PPC was precisely designed to provide higher effectiveness towards corrosion. The derived results revealed that the inhibition activities of both PPA and PPC were enhanced with concentration increase reaching maximal values of 91.15% and 92.39% for PPA and PPC, respectively. Conversely, the mitigation potency dropped by approximately 42.28% (for PPA) and 31.30% (for PPC) as the temperature increased from 308 to 348. PDP plots revealed that PPC and PPA is mixed type inhibitor in 1 M HCl. The adsorption mechanisms of the two inhibitors was examined on micro/nano level with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The derived outcomes indicated high inhibition performance owing to the adsorption of PPA and PPC on MS surface, forming thus a shielding layer that precludes the MS dissolution in the acidic solution. The experimental findings were further confirmed by theoretical descriptors obtained from DFT and Molecular dynamics simulation (MDS) investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.