Abstract

The breakdown voltage in fully depleted SOI n-MOSFET's has been studied over a wide range of film thicknesses, channel dopings, and channel lengths. In lightly-doped films, the breakdown voltage roll-off at shorter channel lengths becomes much less severe as the film thickness is reduced. This is a result of improved resistance to punchthrough and DIBL effects in thinner SOI. Consequently, at channel lengths below about 0.8 /spl mu/m, ultrathin (50 nm) SOI can provide better breakdown voltages than thicker films. At heavier doping levels the punchthrough and DIBL are suppressed, and there is little dependence of breakdown voltage on film thickness. Two-dimensional simulations have been used to investigate the breakdown behavior in these devices. It is found that the drain-induced barrier lowering affects the breakdown voltage both directly, via punchthrough, and indirectly through its effect on the current flow and hole generation in the high-field regions. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call