Abstract
We present a detailed balance based approach for performing current density-voltage characteristic modeling of nanophotonic solar cells. This approach takes into account the intrinsic material non-idealities, and is useful for determining the theoretical limit of solar cell efficiency for a given structure. Our approach only requires the cell's absorption spectra over all angles, which can be readily calculated using available simulation tools. Using this approach, we elucidate the physics of open-circuit voltage enhancement over bulk cells in nanoscale thin film structures, by showing that the enhancement is related to the absorption suppression in the immediate spectral region above the bandgap. We also show that with proper design, the use of a grating on a nanoscale thin film can increase its short-circuit current, while preserving its voltage-enhancing capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.