Abstract
There are a number of emissions produced by internal combustion engines that are regulated to limit atmospheric pollution. However, it is equally important for both environmental and human health to also monitor and control polycyclic aromatic hydrocarbons (PAHs). Using high-carbon alcohols with straight-chain structures, such as n-propanol (Pro), n-butanol (Bu) and n-pentanol (Pen), together with diesel fuel (D), can be a way to reduce these harmful pollutants. In this study, nine different test fuels were created by mixing each higher alcohol with diesel fuel at 5%, 20% and 30% mixing ratios. In order to compare the effects of these test fuels on regulated pollutants and PAH compounds, fuel blends were evaluated in a diesel engine at partial loads and at a constant speed. Regulated emissions were measured using a standard 5-gas analyzer, and PAHs were detected and quantified using rigorous analytical chemistry methods, such as gas chromatography–mass spectrometry (GC–MS). While higher carbon monoxide (CO) and hydrocarbon (HC) pollutants were emitted by the binary blends due to their high oxygen content and latent heat of evaporation (LHE), a decrease in nitrogen oxides (NOx) emissions between 4.98% and 20.08% was observed depending on the alcohol concentration. With the exception of the 20% n-pentanol mixture, PAH concentrations in the exhaust gas were significantly reduced in other binary blends. The 35% n-butanol mixture stood out in reducing total PAHs by 80.98%. In toxicity reduction, the 20% n-propanol mixture was the most effective with a decrease of 91.23% in toxicity. Overall, higher alcohols have been shown to be effective additives not only in reducing overall PAH emissions and toxicity, but also in reducing high-ring and heavier PAHs, which are more carcinogenic and cause a greater risk to engine lifedue to wet stacking under cold starting or low-load conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.