Abstract
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140T, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C. Strain SB140T grew at pH 4.0-7.5 with an optimum pH of 6.0-7.0 using various electron donors and electron acceptors. Yeast extract, sugars, alcohols and organic acids were used as electron donors for sulphate reduction. SB140T additionally used elemental sulphur and nitrate as electron acceptors but not sulphite, thiosulphate or iron(III) provided as ferrihydrite and fumarate. The 16S rRNA gene sequence placed strain SB140T in the genus Desulfosporosinus of the phylum Bacillota. The predominant cellular fatty acids were iso-C15 : 0 (52.6%) and 5,7 C15 : 2 (19.9%). The draft genome of SB140T (5.42 Mbp in size) shared 77.4% average nucleotide identity with the closest cultured relatives Desulfosporosinus acididurans M1T and Desulfosporosinus acidiphilus SJ4T. On the basis of phenotypic, phylogenetic and genomic characteristics, SB140T was identified as a novel species within the genus Desulfosporosinus, for which we propose the name Desulfosporosinus paludis sp. nov. The type strain is SB140T (=DSM 117342T=JCM 39521T).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have