Abstract

A special microenvironment called the “pre-metastatic niche” is thought to help primary tumor cells migrate to new tissues and invade them, in part because the normal barrier function of the vascular endothelium is compromised. While the primary tumor itself can promote the creation of such niches by secreting pro-metastatic factors, the underlying molecular mechanisms are still poorly understood. Here, we show that the injection of primary tumor-secreted pro-metastatic factors from B16F10 melanoma or 4T1 breast cancer cells into healthy mice can induce the destruction of the vascular endothelial glycocalyx, which is a polysaccharide coating on the vascular endothelial lumen that normally inhibits tumor cell passage into and out of the circulation. However, when human umbilical vein endothelial cultures were treated in vitro with these secreted pro-metastatic factors, no significant destruction of the glycocalyx was observed, implying that this destruction requires a complex in vivo microenvironment. The tissue section analysis revealed that secreted pro-metastatic factors could clearly upregulate macrophage-related molecules such as CD11b and tumor necrosis factor-α (TNF-α) in the heart, liver, spleen, lung, and kidney, which is associated with the upregulation and activation of heparanase. In addition, macrophage depletion significantly attenuated the degradation of the vascular endothelial glycocalyx induced by secreted pro-metastatic factors. This indicates that the secreted pro-metastatic factors that destroy the vascular endothelial glycocalyx rely primarily on macrophages. Our findings suggest that the formation of pre-metastatic niches involves degradation of the vascular endothelial glycocalyx, which may hence be a useful target for developing therapies to inhibit cancer metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call