Abstract

BackgroundEndothelial hyper-permeability with plasma leakage and thrombocytopenia are predominant features of severe dengue virus infection. It is well established that heparanase, the endothelial glycocalyx degrading enzyme, plays a major role in various diseases with vascular leakage. It is yet to be elucidated whether heparanase activity plays a major role in dengue-associated plasma leakage. Moreover, the major source of heparanase secretion and activation in dengue remains elusive. Since a relatively high amount of heparanase is stored in platelets, we postulate that heparanase released by activated platelets contributes to the increased plasma heparanase activity during dengue virus infection.MethodsHeparanase activity (plasma and urine), and heparan sulfate and syndecan-1 (plasma levels) were measured in dengue patients with thrombocytopenia in acute phase (n=30), during course of disease (n=10) and in convalescent phase (n=25). Associations with clinical parameters and plasma leakage markers were explored. Platelets from healthy donors were stimulated with dengue non-structural protein-1, DENV2 virus and thrombin to evaluate heparanase release and activity ex vivo.ResultsHeparanase activity was elevated in acute dengue and normalized during convalescence. Similarly, glycocalyx components, such as heparan sulfate and syndecan-1, were increased in acute dengue and restored during convalescence. Increased heparanase activity correlated with the endothelial dysfunction markers heparan sulfate and syndecan-1, as well as clinical markers of plasma leakage such as ascites, hematocrit concentration and gall-bladder wall thickening. Notably, platelet number inversely correlated with heparanase activity. Ex vivo incubation of platelets with thrombin and live DENV2 virus, but not dengue virus-2-derived non-structural protein 1 induced heparanase release from platelets.ConclusionTaken together, our findings suggest that the increase of heparanase activity in dengue patients is associated with endothelial glycocalyx degradation and plasma leakage. Furthermore, thrombin or DENV2 activated platelets may be considered as a potential source of heparanase.

Highlights

  • Dengue virus (DENV) infection is the most prevalent arboviral infection in humans globally [1, 2]

  • In this study we demonstrate the increase of plasma HPSE activity in hospitalized patients with acute dengue virus infection and further explore its relationships with markers of plasma leakage, endothelial glycocalyx degradation, albuminuria and bleeding manifestations

  • We evaluate the possible role of platelet activation to the increased plasma HPSE activity in dengue

Read more

Summary

Introduction

Dengue virus (DENV) infection is the most prevalent arboviral infection in humans globally [1, 2]. Dengue remains asymptomatic or manifests as an undifferentiated fever. Pathological examination revealed that severe plasma leakage in dengue patients occurs with a negligible endothelial damage [4]. Endothelial hyper-permeability with plasma leakage and thrombocytopenia are predominant features of severe dengue virus infection. It is well established that heparanase, the endothelial glycocalyx degrading enzyme, plays a major role in various diseases with vascular leakage. It is yet to be elucidated whether heparanase activity plays a major role in dengue-associated plasma leakage. The major source of heparanase secretion and activation in dengue remains elusive. Since a relatively high amount of heparanase is stored in platelets, we postulate that heparanase released by activated platelets contributes to the increased plasma heparanase activity during dengue virus infection

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.