Abstract

The continuous drive for performance has pushed the researchers to explore novel memory technologies (e.g. non-volatile memory) and novel fabrication approaches (e.g. 3D stacking) in the design of caches. However, a comprehensive tool which models both conventional and emerging memory technologies for both 2D and 3D designs has been lacking. We present DESTINY, a microarchitecture-level tool for modeling 3D (and 2D) cache designs using SRAM, embedded DRAM (eDRAM), spin transfer torque RAM (STT-RAM), resistive RAM (ReRAM) and phase change RAM (PCM). DESTINY facilitates design-space exploration across several dimensions, such as optimizing for a target (e.g. latency or area) for a given memory technology, choosing the suitable memory technology or fabrication method (i.e. 2D v/s 3D) for a desired optimization target etc. DESTINY has been validated against industrial cache prototypes. We believe that DESTINY will drive architecture and system-level studies and will be useful for researchers and designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.