Abstract

Nanoplastics (NPs) discharged from wastewater could pose a major threat to organisms in aquatic environments. Effective removal of NPs by the current conventional coagulation-sedimentation process is not yet satisfactory. This study aimed to investigate the destabilization mechanism of polystyrene NPs (PS-NPs) with different surface properties and sizes (i.e., 90 nm, 200 nm, and 500 nm) by Fe electrocoagulation (EC). Two types of PS-NPs were prepared by a nanoprecipitation method using sodium dodecyl sulfate and cetrimonium bromide solutions to produce negatively-charged SDS-NPs and positively-charged CTAB-NPs. For both NPs, obvious floc aggregation from 7 μm to 14 μm was observed only at pH 7 with particulate Fe accounted for >90 %. At pH 7, Fe EC removed 85.3 %, 82.8 %, and 74.7 % of the negatively-charged SDS-NPs at small-, mid-, and large-sizes from 90 nm, 200 nm, to 500 nm, respectively. Small-size SDS-NPs(90 nm) were destabilized through physical adsorption on the surface of Fe flocs, while the main removal mechanism of mid- and large-SDS-NPs(200 nm and 500 nm) involved the enmeshment of large Fe flocs. Compared to SDS-NPs(200 nm and 500 nm), Fe EC performed similar destabilization behavior to two CTAB-NPs(200 nm and 500 nm), but it resulted in much lower removal rates of 54.8 % - 77.9 %. The Fe EC also exhibited no removal (<1 %) ability toward the small-size and positively-charged CTAB-NPs(90 nm) due to insufficient formation of effective Fe flocs. Our results provide insight into the destabilization of PS in nano-scale with different sizes and surface properties, which clarifies the behavior of complex NPs in a Fe EC-system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.