Abstract

Currently, research on the individual effects of bacteria and antibiotics on the transport of nanoplastics (NPs) in porous media is in its infancy, while research on their combined effect is absent. It is well known that bacteria and antibiotics also interact with each other, so this synergistic transport of bacteria, antibiotics, and NPs in porous media must be very interesting. For exploring this aspect, we investigated the individual and combined effects of bacteria and antibiotics on the transport of polystyrene NPs (PS-NPs) in saturated porous media. Hydrophobicity, roughness, and the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy were measured and calculated. The PS-NPs' transport in porous media was fitted using a mathematical model. Enhanced roughness and size of PS-NPs with increased bacterial concentration dominated and inhibited the PS-NPs' transport in porous media, although the hydrophilicity of PS-NPs and the energy barrier between PS-NPs and porous media were also increased. An increase in antibiotic concentration reduced the energy barrier between PS-NPs and porous media, thereby decreasing the PS-NPs' transport. Combined effects of bacteria and antibiotics on the PS-NPs' transport were complex and distinct from individual effects, but the mechanisms were clear. Roughness and hydrophilicity of PS-NPs and the DLVO interaction energy between PS-NPs and porous media together influenced this process. In the presence of bacteria, antibiotics could alter the bacterial surface roughness by altering bacterial extracellular polymeric substances, and thus alter the PS-NPs' surface roughness, thereby affecting the PS-NPs' transport in porous media. When antibiotics were present, enhanced bacterial concentration increased the PS-NPs' hydrophilicity and the energy barrier between PS-NPs and porous media, thus promoting the PS-NPs' transport. The findings of this study provided a theoretical basis for clarifying the transport of NPs in porous media under complex environments, facilitating a reduction in environmental pollution of NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call