Abstract

In this paper, we associate a finite dimensional algebra, called a Brauer graph algebra, to every clean dessin d’enfant by constructing a quiver based on the monodromy of the dessin. We show that Galois conjugate dessins d’enfants give rise to derived equivalent Brauer graph algebras and that the stable Auslander-Reiten quiver and the dimension of the Brauer graph algebra are invariant under the induced action of the absolute Galois group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.