Abstract

Core-excitation of water ice releases many different molecules and ions in the gas phase. Studying these desorbed species and the underlying desorption mechanisms can provide useful information on the effects of x-ray irradiation in ice. We report a detailed study of the x-ray induced desorption of a number of neutral, cationic, and anionic species from amorphous solid water. We discuss the desorption mechanisms and the relative contributions of Auger and secondary electrons (x-ray induced electron stimulated desorption) and initial excitation (direct desorption) as well as the role of photochemistry. Anions are shown to desorb not just through processes linked with secondary electrons but also through direct dissociation of the core-excited molecule. The desorption spectra of oxygen ions (O+, OH+, H2O+, O-, and OH-) give a new perspective on their previously reported very low desorption yields for most types of irradiations of water, showing that they mostly originate from the dissociation of photoproducts such as H2O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.