Abstract

Recent research has highlighted a correlation between exposure to ambient fine particulate matter (PM2.5) and the development of systemic insulin resistance (IR) along with an elevated risk of diabetes. Ceramide has emerged as one of the pathogenic mechanisms contributing to IR. The inhibition of acid sphingomyelinase (ASMase) activity by desipramine (DES) has been shown to effectively reduce ceramide levels. In the present study, 24 female C57BL/6 N mice were randomized into one of the four groups: the filtered air exposure (FA) group, the concentrated PM2.5 exposure (PM) group, the concentrated PM2.5 treated with low-dose DES (DL) group, and the concentrated PM2.5 treated with high-dose DES (DH) group. The PM, DL and DH groups were exposed to PM2.5 for an 8-week period within a whole-body exposure system. The study encompassed extensive examinations of glucose homeostasis, liver lipid profile, ceramide pathway, and insulin signaling pathway. Our results demonstrated that PM2.5 exposure caused impaired glucose tolerance, elevated ceramide levels, increased phosphorylation PP2A, reduced Akt phosphorylation, and hindered GLUT2 expression. Remarkably, DES administration mitigated PM2.5-induced IR by effectively lowering ceramide levels. In conclusion, the reduction of ceramide levels by DES may be a promising therapeutic strategy for coping PM2.5-induced IR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.